
Lecture 12 -- Neural Networks for Sequence Data: RNNs, GRUs, LSTMs; Deep RNNs

CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

A Feed-Forward Neural Network learns a function from vectors to vectors:

Note: The order of the inputs does not matter at all!

Sequence Data: A problem for FFNNs

HOWEVER, many kinds of data are inherently sequential, often as a time series:

Words in a sentence: The matters order
 Order the matters
 Matters order the
 The order matters

Audio:

Stock prices:

Sequence Data: A problem for FFNNs

We have already tried one way to deal with sequences, using the Markov
Assumption: N-grams = short subsequences of words..... Can we do better?

Population:

So far, our representations for words and documents have either

• Completely ignored sequencing (BOW, TF, TFIDF, mean of embeddings, cosine
similarity); or

• Accounted for very short sequences (N-Grams).

But (modern) natural languages are strongly sequential, and exhibit long-range dependencies:

 The students in CS 505 love NLP. vs. The student in CS 505 loves NLP.

 The students in Professor Snyder's CS 505 class love NLP.

 The students in Professor Snyder's CS 505 (Natural Language Processing) class — at
least when an assignment is not due that night — love NLP.

Sequence Data: A problem for FFNNs in NLP

So far, our representations for words and documents have either

• Completely ignored sequencing (BOW, TF, TFIDF, mean of embeddings, cosine
similarity); or

• Accounted for very short sequences (N-Grams).

But (modern) natural languages are strongly sequential, and exhibit long-range dependencies.

 The students in CS 505 love NLP. The student in CS 505 loves NLP.

 The students in Professor Snyder's CS 505 class love NLP.

 The students in Professor Snyder's CS 505 (Natural Language Processing) class — at
least when an assignment is not due that night — love NLP.

Or just look at first sentence above!

 All verbs are consistently in past tense. ...have ... ignored Accounted

Consistent use of commas in list ... , ... , ... ,

Matching parentheses: ... (.....) ...

 Miscellaneous: ... either or for very short sequences

Clearly we need better methods to process long sequences!

Sequence Data: A problem for FFNNs in NLP

And this is not just a problem with individual sentences.

With an extended discourse, many different things have to be remembered:

I grew up in France. I learn to cycle when I was very young but only learned to swim
as an adult. I also love to cook and bake. I can make a mean cake. I speak several
languages but because of where I grew up, I am most fluent in _______.

Clearly we need better methods to process long sequences!

Sequence Data: A problem for FFNNs in NLP

Recurrent Neural Networks

Σ

a

x0 x1 xn xn+1

...

tanh

The solution is: recursion! (Though we call it “recurrence” in NNs.)

A basic recurrent neuron is the same with one important change: the
outputs are fed back into the input layer:

Another, less significant change, is that tanh is generally used instead of
sigmoid or relu.

Recurrent Neural Networks
In a recurrent layer, all the output activations are fed back and concatenated with
the inputs.

concatenation

Now the input is a sequence of data vectors

processed in a loop for time steps t = 1, 2, ..., T:

Weights for recurrent activations Weights for data inputs

Recurrent Neural Networks

You will commonly see diagrams unrolled through time:

But make sure you understand that this is one layer, with one set of weights W.

A Gated Recurrence Unit (GRU) adds a recurrent activation path which acts as a
memory. Two “sub-neurons” have been added:

Recall Gate: learns how to read from memory;

Update Gate: learns how to write to memory

Recurrent Neural Networks: GRUs

Recurrent Neural Network: LSTM

A Long Short-Term Memory (LSTM) is another, earlier design, still very much
used: The memory cycle is separate from the activation, and an Output gate
determines how memory is used to form the activation.

RNNs: Which one is best for NLP?
Historically, the LSTM design was first, and the GRU was
designed as a simplified version of the LSTM. The very
basic RNN is also used.

However, the LSTM has 4 weight matrices, compared
with 3 for the GRU, 2 for the Simple GRU, and one for
the FFNN.

Adding more gates in general improves performance,
but has an obvious impact on the complexity of training.

For very large networks with large data sets, the GRU is
generally used, and the LSTM seems to work better for
smaller projects such as you would do in an academic
course.

My experience has been that the LSTM works best for
the size and type of projects we’ll do in CS 505.

RNN Network Architectures

There are many ways to configure an RNN. The simplest is a
sequence-to-sequence RNN:

NOTE: From now
on, we’ll show
every RNN unrolled
through time,
though you should
always remember
that there is a for
loop controlling the
whole process.)

Example 1: Part of speech tagging

RNN Network Architectures

RNN Network Architectures

Example 2: A sentence generator using a trained RNN can generate sentences by
picking the most likely next word in each step, until it generates the end-of-sentence
token </s>:

RNN Network Architectures

Another configuration is sequence-to-vector:

RNN Network Architectures
With sequence-to-vector layers, it is very common to add FF layers
downstream, especially for classification:

GRU

FFNN

FFNN

RNN Network Architectures

Example: Text Classification

RNN Network Architectures

A third possibility is vector-to-sequence:

RNN Network Architectures

Example: Image Captioning

In this case, FF layers are
usually added upstream!

RNN Network Architectures

Example: Image Captioning (hopefully accurate)

RNN Network Architectures
Finally, the SOTA sequence-to-sequence model uses

o An Encoder (sequence-to-vector) and

o A Decoder (vector-to-sequence)

and passes a context vector between them:

context vector

RNN Network Architectures
Examples: Machine Translation, Conversation Agents:

Note that the input to the decoder at each time step
is the previous output plus additional activations.

Always keep
in mind that
these are
unrolled in
time!

One more idea: Stacked Recurrent Layers!

RNN Network Architectures

Deep Networks

Generally, networks for
sequence data such
as text have recurrent
layers processing the
sequence, and feed
forward layers
interpreting and
producing output such
as a classification.

GRU

GRU

GRU

FFNN

FFNN

FFNN

FFNN

RNN Network ArchitecturesRNN Network Architectures

Unrolling a deep RNN
network reveals a very
 complicated design!

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs
have been proposed,
with advantages and
disadvantages.

Idea 1: Tree-structured
network which combines
lower levels using some
aggregating function
(weighted) sum, perhaps
controlled by a gate.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs have
been proposed, with advantages
and disadvantages.

Idea 2: Apply 1D Convolutions
to the RNN layers.

LSTM

LSTM

1D CNN

FFNN

FFNN

FFNN

1D CNN

Recurrent Neural Networks: RNNs, GRUs, LSTMs

MANY different designs have
been proposed, with advantages
and disadvantages.

Idea 3: Bidirectional RNN
(BRNN): Combine result of
running two RNNs on forward
and reverse sequence
simultaneously. Results are fed
to the next layer, usually by
concatenation.

Recurrent Neural Networks: RNNs, GRUs, LSTMs

Unfortunately, all this complexity comes with a cost!

Deep recurrent networks have a large number of parameters and
take a long time to train.

Plus, we have the Vanishing Gradients Problem: unrolling through
time makes the network very large and preserving information
(through weights) over long distances is a problem:

RNN Network Architectures

There is a
symmetric
problem, called
the Exploding
Gradients
Problem!

Unfortunately, all this complexity comes with a cost!

Deep recurrent networks have a large number of parameters and
take a long time to train.

Plus, we have the Vanishing Gradients Problem: unrolling through
time makes the network very large and preserving information
(through weights) over long distances is a problem:

RNN Network Architectures

There is a
symmetric
problem, called
the Exploding
Gradients
Problem!

Fun with Character-Level RNN Text Generation

From. The Unreasonable Effectiveness of Recurrent Neural Networks

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with Character-Level RNN Text Generation

From. The Unreasonable Effectiveness of Recurrent Neural Networks

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with Character-Level RNN Text Generation

From. The Unreasonable Effectiveness of Recurrent Neural Networks

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

