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A Feed-Forward Neural Network learns a function from vectors to vectors:

Note: The order of the inputs does not matter at all! 

Sequence Data: A problem for FFNNs



HOWEVER, many kinds of data are inherently sequential, often as a time series:

Words in a sentence:           The matters order
                                             Order the matters
                                             Matters order the
                                             The order matters

Audio: 

Stock prices:

Sequence Data: A problem for FFNNs

We have already tried one way to deal with sequences, using the Markov 
Assumption: N-grams = short subsequences of words.....   Can we do better?

Population:



So far, our representations for words and documents have either

• Completely ignored sequencing (BOW, TF, TFIDF, mean of embeddings,  cosine 
similarity); or

• Accounted for very short sequences (N-Grams).

But (modern) natural languages are strongly sequential, and exhibit long-range dependencies:

     The students in CS 505 love NLP.    vs.     The student in CS 505 loves NLP.       

     The students in Professor Snyder's CS 505 class love NLP.

     The students in Professor Snyder's CS 505 (Natural Language Processing) class — at 
least when an assignment is not due that night — love NLP.

Sequence Data: A problem for FFNNs in NLP



So far, our representations for words and documents have either

• Completely ignored sequencing (BOW, TF, TFIDF, mean of embeddings,  cosine 
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Or just look at first sentence above!

         All verbs are consistently in past tense.      ...have ... ignored  .... Accounted ....

Consistent use of commas in list     ... , ... , ... , ....

Matching parentheses:     ... ( ..... ) ...

       Miscellaneous:     ... either .... or                for very short sequences

Clearly we need better methods to process long sequences!

Sequence Data: A problem for FFNNs in NLP



And this is not just a problem with individual sentences. 

With an extended discourse, many different things have to be remembered:

I grew up in France. I learn to cycle when I was very young but only learned to swim 
as an adult. I also love to cook and bake. I can make a mean cake. I speak several 
languages but because of where I grew up, I am most fluent in _______. 

Clearly we need better methods to process long sequences!

Sequence Data: A problem for FFNNs in NLP



Recurrent Neural Networks

Σ

a

x0 x1       xn      xn+1

...

tanh

The solution is: recursion!    (Though we call it “recurrence” in NNs.)

A basic recurrent neuron is the same with one important change: the 
outputs are fed back into the input layer:

Another, less significant change, is that tanh is generally used instead of 
sigmoid or relu. 



Recurrent Neural Networks
In a recurrent layer, all the output activations are fed back and concatenated with 
the inputs. 

concatenation

Now the input is a sequence of data vectors

processed in a loop for time steps  t = 1, 2, ..., T:

Weights for recurrent activations Weights for data inputs



Recurrent Neural Networks

You will commonly see diagrams unrolled through time:

But make sure you understand that this is one layer, with one set of weights W. 



A Gated Recurrence Unit (GRU) adds a recurrent activation path which acts as a 
memory. Two “sub-neurons” have been added:

Recall Gate:  learns how to read from memory;

Update Gate: learns how to write to memory

Recurrent Neural Networks: GRUs



Recurrent Neural Network: LSTM

A Long Short-Term Memory (LSTM) is another, earlier design, still very much 
used:  The memory cycle is separate from the activation, and an Output gate 
determines how memory is used to form the activation. 



RNNs: Which one is best for NLP?
Historically, the LSTM design was first, and the GRU was 
designed as a simplified version of the LSTM. The very 
basic RNN is also used.

However, the LSTM has 4 weight matrices, compared 
with 3 for the GRU, 2 for the Simple GRU, and one for 
the FFNN. 

Adding more gates in general improves performance, 
but has an obvious impact on the complexity of training.

For very large networks with large data sets, the GRU is 
generally used, and the LSTM seems to work better for 
smaller projects such as you would do in an academic 
course.

My experience has been that the LSTM works best for 
the size and type of projects we’ll do in CS 505. 
 



RNN Network Architectures

There are many ways to configure an RNN.  The simplest is a 
sequence-to-sequence RNN:

NOTE: From now 
on, we’ll show 
every RNN unrolled 
through time, 
though you should 
always remember 
that there is a for 
loop controlling the 
whole process.) 



Example 1: Part of speech tagging

RNN Network Architectures



RNN Network Architectures

Example 2:  A sentence generator using a trained RNN can generate sentences by 
picking the most likely next word in each step, until it generates the end-of-sentence 
token </s>: 



RNN Network Architectures

Another configuration is sequence-to-vector:



RNN Network Architectures
With sequence-to-vector layers, it is very common to add FF layers 
downstream, especially for classification:

GRU

FFNN

FFNN



RNN Network Architectures

Example: Text Classification



RNN Network Architectures

A third possibility is vector-to-sequence:



RNN Network Architectures

Example: Image Captioning

In this case, FF layers are 
usually added upstream!



RNN Network Architectures

Example: Image Captioning (hopefully accurate)



RNN Network Architectures
Finally, the SOTA sequence-to-sequence model uses

o An Encoder (sequence-to-vector) and

o A Decoder (vector-to-sequence)

and passes a context vector between them:

context vector



RNN Network Architectures
Examples:  Machine Translation,  Conversation Agents:

Note that the input to the decoder at each time step 
is the previous output plus additional activations. 

Always keep 
in mind that 
these are 
unrolled in 
time!



One more idea: Stacked Recurrent Layers!

RNN Network Architectures



Deep Networks

Generally, networks for 
sequence data such 
as text have recurrent 
layers processing the 
sequence, and feed 
forward layers 
interpreting and 
producing output such
as a classification. 

GRU

GRU

GRU

FFNN

FFNN

FFNN

FFNN

RNN Network ArchitecturesRNN Network Architectures



Unrolling a deep RNN 
network reveals a very
 complicated design!

Recurrent Neural Networks: RNNs, GRUs, LSTMs



MANY different designs 
have been proposed, 
with advantages and 
disadvantages. 

Idea 1:  Tree-structured 
network which combines 
lower levels using some 
aggregating function 
(weighted) sum, perhaps 
controlled by a gate. 

Recurrent Neural Networks: RNNs, GRUs, LSTMs



MANY different designs have 
been proposed, with advantages 
and disadvantages. 

Idea 2:  Apply 1D Convolutions 
to the RNN layers. 

LSTM

LSTM

1D CNN

FFNN

FFNN

FFNN

1D CNN

Recurrent Neural Networks: RNNs, GRUs, LSTMs



MANY different designs have 
been proposed, with advantages 
and disadvantages. 

Idea 3:  Bidirectional RNN 
(BRNN): Combine result of 
running two RNNs on forward 
and reverse sequence 
simultaneously. Results are fed 
to the next layer, usually by 
concatenation.  

Recurrent Neural Networks: RNNs, GRUs, LSTMs



Unfortunately, all this complexity comes with a cost!

Deep recurrent networks have a large number of parameters and 
take a long time to train. 

Plus, we have the Vanishing Gradients Problem: unrolling through 
time makes the network very large and preserving information 
(through weights) over long distances is a problem:

RNN Network Architectures

There is a 
symmetric 
problem, called 
the Exploding 
Gradients 
Problem!
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RNN Network Architectures

There is a 
symmetric 
problem, called 
the Exploding 
Gradients 
Problem!



Fun with Character-Level RNN Text Generation 

From. The Unreasonable Effectiveness of Recurrent Neural Networks

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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